Table 3. Torsion angles $\left({ }^{\circ}\right)$

$\mathrm{C}(16)-\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(14)$	83
$\mathrm{C}(20)-\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(14)$	-154
$\mathrm{~N}(2)-\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	58
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{N}(1)$	57
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{C}(2)$	74
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{C}(7)$	-122

and clopimozide (Van Opdenbosch, Evrard, Durant \& Koch, 1977). The dimerization is due to the amide groups which are hydrogen-bonded: $\mathrm{O}-$ $\mathrm{N}(4)[-x,-y,-z] 2.82 \AA$.

NVO thanks l'Institut pour l'Encouragement de la

Recherche Scientifique dans l'Industrie et l'Agriculture (IRSIA) for a fellowship.

References

Declerce, J. P., Germain, G. \& Koch, M. H. J. (1973). Acta Cryst. B29, 2311-2313.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
International Tables for X-ray Crystallography (1974). Vol. III. Birmingham: Kynoch Press.

Kосн, M. Н. J. (1973). Acta Cryst. B29, 379-382.
Okaya, Y. \& Frenz, B. (1975). Molecular Structure Corporation, PO Box DF, College Station, Texas.
Van Opdenbosch, N., Evrard, G., Durant, F. \& Koch, M. H. J. (1977). Acta Cryst. B33, 596-599.

Acta Cryst. (1977). B33, 3234-3237

\boldsymbol{N}-Methylphenethylammonium Trichloronickelate(II)

By R. L. Harlow and S. H. Simonsen
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA

(Received 20 April 1977; accepted 31 May 1977)

Abstract

C}_{9} \mathrm{H}_{14} \mathrm{~N}\right] \mathrm{NiCl}_{3}, \quad M_{r}=301.29\), orthorhombic, $P 22_{1} 2_{1} 2_{1}, Z=4$. At $-35^{\circ} \mathrm{C}, a=7.414$ (1), $b=26.510$ (5), $c=6.125$ (1) $\AA, V=1203.7 \AA^{3}, D_{x}=$ $1.662 \mathrm{~g} \mathrm{~cm}^{-3}$. Mo K α radiation, $\lambda=0.71069 \AA, \mu=$ $22.3 \mathrm{~cm}^{-1}$. Full-matrix least-squares refinement using 1116 reflections $[I>2 \sigma(I)$] collected with ω scans on a Syntex diffractometer converged at a conventional R of 0.039 . The structure consists of $\left(\mathrm{NiCl}_{3}^{-}\right)_{n}$ infinite chains in which each of the chloride ions serves as a bridging ligand to effect octahedral coordination of the nickel ions. These chains interact weakly with the cations through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Introduction. The structures of N-methylphenethylammonium trichlorocuprate(II) (Harlow, Wells, Watt \& Simonsen, 1974a) and bis(N-methylphenethylammonium) tetrachlorocuprate(II) (Harlow, Wells, Watt \& Simonsen, 1974b) contain Cu^{2+} ions with unusual coordination geometries. As an extension of these studies, other N-methylphenethylammonium [hereafter abbreviated as (nmpH)] chlorometallates are presently being investigated.

Light-orange crystals of the title compound were grown by slow evaporation of an acetone solution under a stream of dry N_{2} gas. The crystal selected for this study was a cleaved section of a needle with approximate dimensions of $0.05,0.1$ and 0.5 mm . The
crystal was mounted parallel to the needle axis (crystallographic c axis) and placed on a Syntex diffractometer equipped with a low-temperature apparatus which kept the crystal cooled to $-35^{\circ} \mathrm{C}$. The unit-cell parameters were refined using the Bragg angles of 30 low-angle ($18<2 \theta<27^{\circ}$) reflections.

Intensity data for 1635 unique reflections $(4<2 \theta<$ 55°) were collected by the ω-scan technique. Scans of 1.0° were employed with scan rates which ranged from 1.5 to $5.0^{\circ} \mathrm{min}^{-1}$ depending on the number of counts accumulated in a rapid preliminary scan. Background measurements were taken at both ends of the scan; the time for each measurement was one-half the scan time. The intensities of four standard reflections were monitored after every 96 reflections; only statistical variations were noted. The intensities were corrected for Lorentz and polarization effects but not for absorption.

The structure was solved by direct methods and Fourier syntheses. The full-matrix least-squares refinement of 127 variables using only those 1116 reflections for which $I>2 \sigma(I)$ converged at a conventional R of 0.039 . Anomalous dispersion corrections for the scattering factors of Ni and Cl were included in the final stages of the refinement; the enantiomorphic structure converged at $R=0.042$. The non-hydrogen atoms were refined with anisotropic thermal

Table 1. Final atomic coordinates with the assigned isotropic thermal parameters of the hydrogen atoms (e.s.d.'s in parentheses)

	x	y	z	$U_{\text {iso }}$
	$0.292(3)$	$0.00026(3)$	$0.4433(1)$	
Ni	$0.2492(3)$	$-0.03758(7)$	$0.1968(5)$	
$\mathrm{Cl}(1)$	$0.0347(2.453(3)$	$-0.03084(7)$	$0.1958(5)$	
$\mathrm{Cl}(2)$	0.4753			
$\mathrm{Cl}(3)$	$0.2324(3)$	$0.07042(5)$	$0.1933(3)$	
$\mathrm{C}(1)$	$0.0865(9)$	$0.2947(2)$	$0.1470(11)$	
$\mathrm{C}(2)$	$0.0087(11)$	$0.2921(3)$	$0.3527(12)$	
$\mathrm{C}(3)$	$0.0021(16)$	$0.2455(4)$	$0.4661(19)$	
$\mathrm{C}(4)$	$0.0747(11)$	$0.2036(3)$	$0.3705(15)$	
$\mathrm{C}(5)$	$0.1530(10)$	$0.2057(3)$	$0.1687(15)$	
$\mathrm{C}(6)$	$0.1610(10)$	$0.2515(3)$	$0.0565(12)$	
$\mathrm{C}(7)$	$0.0913(11)$	$0.3441(3)$	$0.0206(14)$	
$\mathrm{C}(8)$	$0.2619(13)$	$0.3727(2)$	$0.0613(10)$	
N	$0.2627(13)$	$0.4224(2)$	$-0.0574(9)$	
$\mathrm{C}(9)$	$0.2443(17)$	$0.4187(2)$	$-0.2971(12)$	
$\mathrm{H}(1)$	-0.0428	0.3231	0.4212	0.068
$\mathrm{H}(2)$	-0.0548	0.2433	0.6139	0.067
$\mathrm{H}(3)$	0.0703	0.1707	0.4499	0.71
$\mathrm{H}(4)$	0.2046	0.1745	0.1016	0.067
$\mathrm{H}(5)$	0.2206	0.2531	-0.0898	0.058
$\mathrm{H}(6)$	0.0819	0.3365	-0.1390	0.062
$\mathrm{H}(7)$	-0.0134	0.3654	0.0665	0.062
$\mathrm{H}(8)$	0.3665	0.3521	0.0100	0.052
$\mathrm{H}(9)$	0.2738	0.3792	0.2215	0.052
$\mathrm{H}(10)$	0.1704	0.4410	-0.0065	0.553
$\mathrm{H}(11)$	0.3676	0.4380	-0.0279	0.053
$\mathrm{H}(12)$	0.2460	0.4534	-0.3620	0.056
$\mathrm{H}(13)$	0.3465	0.3986	-0.3578	0.056
$\mathrm{H}(14)$	0.1275	0.4019	-0.3340	0.056

parameters. The positions of the H atoms were found in a difference map but failed to refine properly; the H positions were then calculated ($\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances were set at 1.0 and $0.9 \AA$ respectively) and were fixed during the refinement. Each H atom was assigned an isotropic thermal parameter, $B_{\text {iso }}$, equal to $2.0 \AA^{2}$ plus the value of the atom to which it was bonded. The final positional and (for H) thermal parameters are listed in Table 1.* (See Fig. 1 for the

Fig. 1. Atom-numbering scheme for the N-methylphenethylammonium cation.
atom numbering of the cation.) The largest peak in the final difference map had a magnitude of approximately 0.3 e \AA^{-3} and was located midway between the Ni atoms of the infinite chain. The mathematical and computational details are noted elsewhere (Harlow \& Simonsen, 1976).

Discussion. Structures of a large number of trichlorocuprate(II) salts have shown that the Cu^{2+} ion exhibits a wide variety of coordination numbers and geometries when complexed with Cl^{-}ions (see review by Smith, 1976). In contrast, the few trichloronickelate(II) structures that have been reported are all similar; the NiCl_{3}^{-} units form one-dimensional chains in which all three Cl^{-}ions serve as bridging ligands to effect octahedral coordination of the Ni^{2+} ions (Asmussen, Larsen \& Soling, 1969; Stucky, 1968; Willett, 1966; and references therein). It was speculated, however, that $(\mathrm{nmpH}) \mathrm{NiCl}_{3}$ might possibly be isostructural with the CuCl_{3} salt, which contains an unusual $\left(\mathrm{CuCl}_{3}^{-}\right)_{n}$ infinite chain of five-coordinate Cu^{2+} ions in which two of the three Cl^{-}ions serve as bridging ligands while the third is a terminal ligand. On the other hand, the NiCl_{3}^{-} anions might form a novel dimeric or polymeric species (perhaps similar to those found for some CuCl_{3}^{-}salts), particularly in view of the cation's ability to form strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

The geometry of the $\left(\mathrm{NiCl}_{3}^{-}\right)_{n}$ chain in the structure of $(\mathrm{nmpH}) \mathrm{NiCl}_{3}$, shown in Fig. 2, is however identical with those reported for the $\mathrm{Rb}^{+},\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}^{+}$and $\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$salts (references noted above). The $\mathrm{Ni}-\mathrm{Cl}$ bond lengths are given in Fig. 3 and are seen to be somewhat longer, in general, than those previously determined which ranged from 2.351 to $2.408 \AA$. The distortion of the $\mathrm{Cl}-\mathrm{Ni}-\mathrm{Cl}$ angles (Table 2) from 90° is apparently the result of $\mathrm{Ni} \cdots \mathrm{Ni}$ repulsions; this 'elongation' in the direction of the chain is found in all the NiCl_{3}^{-}structures.

Table 2. Bond angles $\left(^{\circ}\right.$) associated with Fig. 3
(a) The polymeric anion

$\mathrm{Cl}(1)-\mathrm{Ni}-\mathrm{Cl}(2)$	85.5 (1)	$\mathrm{Cl}(3)-\mathrm{Ni}-\mathrm{Cl}(1)^{\prime} \quad 97$	97.2 (1)
$\mathrm{Cl}(1)-\mathrm{Ni}-\mathrm{Cl}(3)$	83.6 (1)	$\mathrm{Cl}(3)-\mathrm{Ni}-\mathrm{Cl}(2)$ ' 9	96.4 (1)
$\mathrm{Cl}(1)-\mathrm{Ni}-\mathrm{Cl}(1){ }^{\prime} \quad 1$	179.1 (1)	$\mathrm{Cl}(3)-\mathrm{Ni}-\mathrm{Cl}(3)^{\prime} \quad 179$	179.6 (1)
$\mathrm{Cl}(1)-\mathrm{Ni}-\mathrm{Cl}(2)^{\prime}$	95.0 (1)	$\mathrm{Cl}(1)^{\prime}-\mathrm{Ni}-\mathrm{Cl}(2)^{\prime} \quad 8$	84.8 (1)
$\mathrm{Cl}(1)-\mathrm{Ni}-\mathrm{Cl}(3)^{\prime}$	96.4 (1)	$\mathrm{Cl}(1)^{\prime}-\mathrm{Ni}-\mathrm{Cl}(3)^{\prime} \quad 82$	82.8 (1)
$\mathrm{Cl}(2)-\mathrm{Ni}-\mathrm{Cl}(3)$	84.3 (1)	$\mathrm{Cl}(2)^{\prime}-\mathrm{Ni}-\mathrm{Cl}(3)^{\prime} \quad 83$	83.9 (1)
$\mathrm{Cl}(2)-\mathrm{Ni}-\mathrm{Cl}(1)^{\prime}$	94.7 (1)	$\mathrm{Ni}-\mathrm{Cl}(1)-\mathrm{Ni}^{\prime \prime} \quad 78$	78.3 (1)
$\mathrm{Cl}(2)-\mathrm{Ni}-\mathrm{Cl}(2)^{\prime} \quad 1$	179.2 (1)	$\mathrm{Ni}-\mathrm{Cl}(2)-\mathrm{Ni}^{\prime \prime} \quad 78$	78.9 (1)
$\mathrm{Cl}(2)-\mathrm{Ni}-\mathrm{Cl}(3)^{\prime}$	95.4 (1)	$\mathrm{Ni}-\mathrm{Cl}(3)-\mathrm{Ni}^{\prime \prime} \quad 78$	78.6 (1)
(b) The $\mathrm{N}-\mathrm{H} \ldots \mathrm{Cl}$ contacts			
$\mathrm{N}-\mathrm{H}(10) \cdots \mathrm{Cl}(1)$	148	$\mathrm{N}-\mathrm{H}(11) \cdots \mathrm{Cl}(2)$	136
$\mathrm{N}-\mathrm{H}(10) \cdots \mathrm{Cl}(2)^{\prime}$	132	$\mathrm{N}-\mathrm{H}(11) \cdots \mathrm{Cl}(1)^{\prime}$	132
$\mathrm{Cl}(1) \cdots \mathrm{H}(10) \cdots \mathrm{Cl}(2)$) 80	$\mathrm{N}-\mathrm{H}(11) \cdots \mathrm{Cl}(3)^{\prime}$	135
		$\mathrm{Cl}(2) \cdots \mathrm{H}(11) \cdots \mathrm{Cl}(1)^{\prime}$	' 79
		$\mathrm{Cl}(2) \cdots \mathrm{H}(11) \cdots \mathrm{Cl}(3)^{\prime}$	' 83
		$\mathrm{Cl}(1)^{\prime} \cdots \mathrm{H}(11) \cdots \mathrm{Cl}(3)^{\prime}$	$)^{\prime} \quad 65$

Fig. 2. Packing diagram for N-methylphenethylammonium trichloronickelate(II). The three chloride ions of each NiCl_{3}^{-}unit form bridges to produce chains (along crystallographic 2 , screw axes) of octahedrally coordinated nickel ions.

Fig. 3. Bond distances (\AA) for the NiCl_{3}^{-}polymeric anion and for the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ contacts between the cation and the anion. The $\mathrm{Ni} \cdots \mathrm{Ni}$ distance is 3.063 (1) \AA.

The details of the $\mathrm{N} \cdots \mathrm{Cl}$ contacts are presented in Fig. 3 and Table 2. The positions of $\mathbf{H}(10)$ and $\mathbf{H}(11)$ appear to be the result of general cation-anion packing considerations. There are several $\mathrm{H} \cdots \mathrm{Cl}$ interactions

Table 3. Bond distances (\AA) and angles (${ }^{\circ}$) for the N-methylphenethylammonium cation

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.388(10)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$119.0(6)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.389(10)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	$121.1(6)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.521(10)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	$119.9(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.418(14)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120.3(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.366(14)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.0(10)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.368(13)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$121.5(8)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.396(10)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$119.9(7)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.497(11)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$120.3(7)$
$\mathrm{C}(8)-\mathrm{N}$	$1.504(8)$	$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$111.8(6)$
$\mathrm{N}-\mathrm{C}(9)$	$1.478(9)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}$	$111.5(6)$
		$\mathrm{C}(8)-\mathrm{N}-\mathrm{C}(9)$	$115.0(5)$

for these two hydrogens, but most of the contacts are of the order of magnitude, $3.0 \AA$, of the sum of the van der Waals radii for H and Cl (Hamilton \& Ibers, 1968). None of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ angles is close to 180°.

The dimensions of the cation are shown in Table 3.
The authors thank the Robert A. Welch Foundation for financial support.

References

Asmussen, R. W., Larsen, t. K. \& Soling, H. (1969). Acta Chem. Scand. 23, 2055-2060.

Hamilton, W. C. \& Ibers, J. A. (1968). Hydrogen Bonding in Solids, p. 16. New York: Benjamin.
Harlow, R. L. \& Simonsen, S. H. (1976). Acta Cryst. B32, 466-470.
Harlow, R. L., Wells, W. J., Watt, G. W. \& Simonsen, S. H. (1974a). Inorg. Chem. 13, 2860-2864.

Harlow, R. L., Wells, W. J., Watt, G. W. \& Simonsen, S. H. (1974b). Inorg. Chem. 13, 2106-2111.

Smith, D. W. (1976). Coord. Chem. Rev. 21, 93-158.
Stucky, G. D. (1968). Acta Cryst. B24, 330-337.
Willett, R. D. (1966). J. Chem. Phys. 45, 3737-3740.

Acta Cryst. (1977). B33, 3237-3238

Bis(DL-proline)manganese(II) Dibromide Dihydrate

By T. Glowiak and Z. Ciunik
Institute of Chemistry, University of Wroclaw, 50-383 Wrockaw, Poland

(Received 26 May 1977; accepted 11 June 1977)

Abstract. $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Br}_{2} \mathrm{Mn}$, monoclinic, $P 2_{1} / c, a=$ 9.375 (1), $b=9.195$ (2), $c=10 \cdot 122$ (2) $\AA, \beta=$ $106.38(2)^{\circ}, M_{r}=481 \cdot 1, V=837.1 \AA^{3}, Z=2, D_{m}=$ $1.91, D_{x_{0}}=1.91 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Cu} K(x)=132.7 \mathrm{~cm}^{-1}, \lambda=\right.$ $1.5418 \AA$. The proline molecule is a monodentate O donor ligand. C^{v} of the pyrrolidine ring is statistically situated on both sides of the $\mathrm{NC}^{\alpha} \mathrm{C}^{\beta} \mathrm{C}^{\delta}$ plane. The structure was refined to an R of 0.038 for 1006 diffractometer data.

Introduction. The crystals grew as colourless plates from an aqueous solution of MnBr_{2} and de-proline in a molar ratio 1:2. All measurements for a crystal $0 \cdot 12 \times$ $0.14 \times 0.15 \mathrm{~mm}$ were made on a Syntex $P 2$, com-puter-controlled four-circle diffractometer equipped with a scintillation counter and graphite monochromator. The cell parameters were determined by least-squares refinement of the setting angles of 15 reflexions given by the automatic centring program. Intensities of 1127 independent reflexions were measured up to $2 \theta=114.0^{\circ}$ with the variable $\theta-2 \theta$ scan technique. The scan rate varied from 3.8 to 20.0° min^{-1} depending on the intensity. 1006 reflexions with $I>1.96 \sigma(I)$ were used in the analysis. The intensities were corrected for Lorentz and polarization factors, but not for absorption.

The structure was solved by the heavy-atom method. Full-matrix refinement with isotropic thermal parameters to $R_{1}=\Sigma\left\|F_{o}\left|-\left|F_{c} \| / \Sigma\right| F_{o}\right|=0.096\right.$ and anisotropic thermal parameters to $R_{1}=0.050$ was performed. Deviations from the expected geometry of the pyrrolidine ring ($\mathrm{C}^{\beta}-\mathrm{C}^{\nu}$ was $1.407 \AA$) and very large thermal parameters of C^{v} were found. A difference synthesis, excluding $\mathrm{C}^{\boldsymbol{v}}$, showed two new maxima consistent with the pyrrolidine ring. The structure was again refined with isotropic thermal parameters to $R_{1}=0.092$ and with anisotropic
parameters to $R_{1}=0.048$. The occupancy factors, G, calculated for the new atoms were 0.60 and $0 \cdot 40$. The positions of the H atoms in the pyrrolidine ring were

Table 1. The occupancy and positional $\left(\times 10^{4}\right)$ parameters with e.s.d.'s in parentheses

	G	x	y	z
Mn	1.0	0	0	0
Br	1.0	2156 (1)	1712 (1)	-566(1)
O(1)	1.0	1505 (5)	-1830 (5)	636 (5)
O(2)	1.0	1195 (7)	-3382 (5)	-1101 (5)
$\mathrm{O}(W)$	1.0	697 (6)	633 (5)	2161 (4)
N	1.0	2434 (6)	-3814 (6)	2596 (6)
C^{\prime}	1.0	1571 (7)	-3052 (8)	142 (7)
$\mathrm{C}^{\text {a }}$	1.0	2191 (7)	-4296 (7)	1146 (7)
C^{β}	1.0	3714 (10)	-4787 (11)	1085 (9)
$\mathrm{C}^{\text {p }}$	$0 \cdot 6$	4744 (19)	-3863 (21)	2014 (17)
$\mathrm{C}^{p_{2}}$	0.4	4844 (27)	-4725 (43)	2564 (26)
C^{δ}	1.0	4032 (9)	-3482 (11)	3178 (9)
	Atom bearing	G	x	z
H(1)*	C^{α}	1.0	$1435-5114$	879
H(2)	C^{β}	0.6	$3821-4678$	120
H(3)	C^{β}	$0 \cdot 6$	3921 -5830	1370
H(4)	C^{β}	0.4	$3699-5823$	752
H(5)	C^{β}	0.4	$4082-4148$	435
H(6)	$\mathrm{C}^{\text {v }}$	0.6	4916 -2957	1513
H(7)	$\mathrm{C}^{\text {p }}$	0.6	$5726-4371$	2384
H(8)	$\mathrm{C}^{\nu_{2}}$	0.4	$5812-4361$	2538
H(9)	$\mathrm{C}^{\nu_{2}}$	0.4	$4850-5599$	3067
H(10)	C^{δ}	0.6	$4496-4075$	4029
H(11)	C^{δ}	0.6	$4192-2416$	3438
H(12)	C^{8}	0.4	$4285-2480$	2907
H(13)	$\mathrm{C}^{\text {8 }}$	0.4	$4357-3536$	4221
H(14)	N	1.0	$2129-4605$	3159
H(15)	N	1.0	1813 -2927	2631
H(16)	$\mathrm{O}(W)$	1.0	$1300-60$	2870
H(17)	$\mathrm{O}(W)$	1.0	9401620	2520

